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Research Institute for Mathematical Sciences, Kyoto University, Sakyoku, 606 Kyoto, 
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Received 29 October 1992 

Abstract. Exactly solvable models based on Darboux transformations of a generalized 
Schrijdinger equation are studied. The formulation allows not only a unified description of 
the standard inverse scattering problems at fixed energy and at tixed angular momentum 
but also includes problems with a’linear relationship between 2’ and k2 as well as the 
treatment of 2‘- or P-dependent potentials. Based on a characteristic symmetry property 
of Darboux transformations, generalized integralequations are derived and discussed with 
respect to the standard equations of inverse scattering theory. New exactly solvable 
models for the generalized Schrijdinger equation are consh’ucted. 

~ ~ 

1. Introduction 

Exactly solvable quantum Hamiltonians are of great interest for the investigation of 
quantum scattering problems [l]. In principle they result as special solutions of the 
integral equations of the inverse scattering theory [Z], although in many cases they are 
not directly derived from these equations. The usual concept of a solvable model 
comprises the knowledge of the whole set of eigenfunctions and eigenvalues in a 
closed form. There are comparatively few potentials satisfying such a criterion [3 ,4] .  

Darboux transformations [5] represent a powerful tool in generating families of 
isospectral Hamiltonians. Originally a theorem on second-order differential equa- 
tions, it was generalized by Crum [6] and used in one- and three-dimensional inverse 
scattering problems [7,8]. Extensions of the Darboux theorem to a wide class of linear 
partial differential equations as weU as to differential-difference and difference- 
difference linear evolution equations were first considered by Matveev [lo] in 1979. In 
this context Darboux transformations, which are directly related to the Backlund 
transformations [9], became very popular as basic ingredients in the study of nonlinear 
partial differential equations [Ill. 

In this paper we consider Darbow transformations in view of their application in 
inverse scattering problems. Darboux transformations yield exactIy solvable models 
which are used to construct a local, spherically symmetric potential from a given 
S-matrix [U, 131. In principle Darboux transformations lead only to explicit relations 
between the transformed Hamiltonian and a background Hamiltonian, together with 
their eigenfunctions. All features of the background Hamiltonian must be known, but 
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Figure 1. The (A ,  k)-v&e at whicb the S-matrix is required in different inverse scattering 
problems. The axis for the complex quantities ,Iz and k' must be understood symbolically. 
The energy k2 is kept constant in exactly solvable models at fixed k (dashed line), the 
angular momentum ,I is kept constant in inverse Scattering problems at fixed I (dashed 
dotted line). The solid line indicates general inverse scattering problems with mutual 
linear dependence of 2.' and kZ. 

not necessarily in closed analytic form. Therefore, Darboux transformations extend 
the class of potentials for inverse scattering problems far beyond the exactly solvable 
ones. Nevertheless we retain for those Hamiltonians the expressions exactly soluable 
models. In many cases the additional S-matrix associated with the Darboux transfor- 
mation is of rational form and thus flexible enough to approximate experimentally 
given S- matrices. 

The exactly solvable models we are dealing with allow us to establish an exact 
correspondence between a scattering matrix which depends on one continuous 
parameter and a local potential V(r) depending on the continuous parameter r. On 
the other hand, the S-matrix depends on two continuous variables, the wavenumber k 
and the angular momentum A = I +  1/2, where I is the angular momentum quantum 
number. This suggests that the inverse problem is overdetermined, and explains why 
traditionally one variable of the S-matrix is kept constant. Correspondingly one 
distinguishes between inverse problems at fixed k and at fixed A. 

Rudyak and Zakhariev 1141 suggested Darboux transformations for a slightly more 
general Sturm-Liouville problem than the radial Schrtjdinger equation, namely 

+ !6j- V(r)] y(8, r) = 0' h(r)y(B, r) drZ rz 

with the potential V(r) and 8, k,,, ,lo being complex numbers. In the corresponding 
inverse scattering problem 8 is the continuous variable mentioned above. Depending 
on the specific choice of h(r) this equation reduces to the radial Schrodinger equation 
for different inverse scattering problems. For h(r) = - 1 equation (1) represents an 
eigenvalue problem in the wavenumber k,  which is associated with the inverse 
scattering problem at fixed A. Altematively, one can obtain the associated 
Schrtjdinger equation for the inverse scattering problem at fixed k by the choice 
h(r)= I/?. Thus, a unified description of the traditional inverse scattering problems 
can be based on (1). Furthermore the Sturm-Liouville ansatz (1) gives rise to new 
inverse scattering problems [14] where A* and k2 obey a linear relationship (figure 1). 
Even more appealing from the point of view of applications to realistic systems is the 
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possibility of [U] treating potentials with linear IC- and ,I2-dependence by a simple 
choice of h(r). 

It is the aim of this paper to study exactly solvable models for general inverse 
scattering problems (1) via Darboux transformations. For this purpose we start from 
the Darboux transformations [I41 of the equation (1) and formulate a compact matrix 
extension. In a further step we show how and under what conditions these can be cast 
into general integral equations of inverse scattering theory. The study of equation (1) 
leads to new exactly solvable models with an explicit relationship between the 
S-matrix and the potential, which can be applied in inverse scattering problems. 

In section 2 we define Darboux transformations and introduce a matrix generaliza- 
tion. The known Bargmann schemes of Lipperheide and Fiedeldey [12], the potentials 
of Theis 1161 at fixedlZ and the extended scheme of Leeb et a1 1171 will turn out to be 
special examples of exactly solvable models based on these Darboux transformations. 
An important role in our considerations is played by a symmetry property which gives 
rise to new transformations. This property is also useful in constructing the kernels of 
associated integral equations, as discussed in section 3. As special examples of these 
generalized integral equations we obtain the Gel'fand-Levitan equation in the 
degenerate case 1201 and the integral equations of the inverse scattering problem of 
Burdet et a1 [19]. In section 4 we describe some new exactly solvable models which 
arise from generalized Darboux transformations and give their basic properties. 
Finally, section 5 contains some concluding remarks. 

2. Darbonx transformations 

A very fruitful tool for obtaining exact solutions for second-order differential eqna- 
tions was introduced by Darboux over a century ago [4]. In the present paper we 
consider the Darboux transformations for the Sturm-Liouville equation (1). In the 
following we assume that we know the whole set of solutions yo(O,r) of the 
differential equation (1) with the potential Vo(r). Using two specific solutions qo(y. r) 
and co(a, r) of (1) with O=y and O=a, respectively, we can define a new function 

where 

is the Wronskian and C is an arbitrary constant. This is a very simple Darboux 
transformation of (l) ,  and some of its features have already been discussed by Rudyak 
and Zakhariev [14]. After straightforward calculations the new function ql(y ,  r )  tums 
out to be a solution of the Sturm-Lionville equation (1) with the new potential V,(r), 
which can be written in the compact form 

Vl(r)= (4) 

It is important to note that the modification of the potential depends only on the 
function cO(a, r). Darboux transformations of two linearly independent solutions 



5148 

qo(y, r ) ,  Eo(y, r) yield two hearly independent solutions ql(y, r ) ,  El(y, r) of (1) with 
the potential VI@). Hence the whole manifold of solutions associated with Vl(r) is 
known. 

In order to obtain Darboux transformations of sufficient complexity to be suitable 
for physical scattering processes one must generalize (3). A first step is the construc- 
tion of new functions vz(y, r) from three known solutions qo(y, r), <da, r) and &$?, r ) .  
A straightforward extension of (3) yields 
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(56) 
VO(Y, r) &(A r) Ma, 4 

A(r): = Ch(r)-3'4 det q;l(y, r) tb(j3, r) <;(a, r) 
vXr, r) EU, r)  CXa, r) 

) (6) 
d d 

where the prime denotes the derivative with respect to r. The functions qz(y, r) are 
solutions of the Sturm-Liouville equation (1) with the potential 

i 
vZ(r) = vu(r) - 2 ~ 1 ' 2 -  dr (MW'?; ~ w [ E O ( B ,  r); tO(a, r)l . 

The transformation (5) is equivalent to an iteration of (3) using c= C?. For the special 
choice e= (yZ-bz)-',  the transformation (5) can be written in the form 

This procedure can be extended further. We obtain more general Darboux transfor- 
mations by defining 

v Z b ,  r ) :=vdy,  r)-'W)'%YC(r) (84 
with the vectors 

The function (8) is a straightfonvard generalization of (7) depending on the 2N known 
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solutions &,(a,, r ) ,  E&, r ) ,  i =  1,2, . . , Nof the Sturm-Liouville equation (1) with the 
potential V,. The transformed functions (8) are solutions of the Sturm-Liouville 
equation (I) with the potential 

V2(r) = V0@) dr (9) 

which has the characteristic stiuctnre of a Bargmann-type potential. 
The Darboux transformations introduced in this paper are valid for any support of 

the Sturm-Liouville equation (1). In particular they can be applied on the full axis in 
one-dimensional problems as well as on the half-axis for the radial equations in partial 
wave expanded three-dimensional problems. Furthermore, no assumption has been 
made about specific boundary conditions of the solutions $(ai, r) and r). If the 
behaviour of these solutions @r r+ m is specified, we can deduce the corresponding 
scattering matrix from the Darbow-transformed wavefunctions in closed form. 

The exactly solvable models at fixed angular momentum introduced by Theis [I61 
are special cases of (8,9) for h(r) = - 1, choosing the functions $(a,, r), r) ,  
i= 1,2, . . , N to be regular and Jost solutions, respectively. On the other hand, the 
choice h(r) = l / r z  leads to the models at fixed energy investigated by Leeb et ai. [17], 
which also use regular and Jost solutions, and reduce to the very useful rational and 
non-rational B a r p m  schemes developed by Lipperheide and Fiedeldey [E]. Thus 
the general Darboux transformations of the Sturm-Liouville equation (1) allow a 
unified description of these models. 

Concluding this presentation of the Darboux transformations we point out some 
interesting properties of them. First of all, there exists a useful symmetry relation. 
Consider the two Darboux transformations (2) and (5). They can be written in the 
form 

where A and B are functions of r, which may also depend on other parameters. The 
function [&, r) is a solution of the Sturm-Liouville equation (1) with the potential 

V,(r)= (11) 

if the functions A ,  B fulfill the condition 

-4 (:A(.)) ( ; B ( r ) )  

1 A;-$ 
y*h(r) + V,(r) +- -ki A(r)B(r). 

r2 

This can easily be verified by evaluating the Sturm-LiouviUe equation (1) with the 
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potential Vl(r) and the function El(?, r). The relation (12) is symmetric with respect to 
an interchange of A and B. This property implies that 
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is conversely a solution of the Stnrm-Liouville equation (1) with the potential 

vl(r)=Vn(r) 

Let us consider some particular cases. If A(r)= 1 it is obvious from (12) that the 
choice h(r)-"'B(r) = cO(a, r) will lead to the simplest transformation associated with 
the potential (4). Another important type of function is obtained applying the 
symmetry relation to the transformations (2). Defining A(r): = C W[&9, r);  &,(a, r)] 
and B(r): = h(r)1'45n(a, r) yields the function 

which is a new solution of the Sturm-Liouville equation (1) with the potential (6) of 
the iterated Darbow transformation (2). A generalization of (15) leading to a solution 
associated with the potential (9) can also be given by 

Mr): =WYIW) (164 
where %(r) and &(r) are given in (8) and &(r) is the vector 

EZ(,(Bl, r )  

Ez(r): = [ EZ!!: r) . (166) 

Ez(BN, r) 
Finally, we construct the inverse frunsformation to the iterated Darbonx transforma- 
tion (7). For this purpose we define the operator Tzn, which transforms qn(y, r) into 
d Y  7 r) : 

As shown above, the symmetry property of Darboux transformations (12) leads to 
new solutions (15) associated with the same potential V,. In analogy to (15) we can 
define the function 

which is a solution for 0 = a  of (1) with the potential V,(r). The two solutions EZ(j ,  r) 
and cz(a, r ) ,  together with the solutions qz(y, r) are used to formulate the inverse of 
the transformation (74, namely, 

Using the definitions of qz(y, r), &(a, r) and El@, r) this expression can easily be 
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verified. It is straightforward to show from (1) that the operator Tm satisfies the 
intertwining relation 

W ) T a  = T2ooo(r) (18) 
where Do and D2 denote the differential operators 

i = o , 2 .  1 ---+ ki- Vc(r) 

The existence of the inverse operator (17) together with the validity of the interhvin- 
ing relation (18) are the characterizing features of fransfonnation operators, which 
have been thoroughly studied by Levitan [ZO], who has also shown their use in inverse 
problems. Consequently, the operator TNo corresponding to the generalized Darbonx 
transformation (8) is also a transformation operator because (8) corresponds to an 
iterated form of the transformation (7). 

3. Darbonx transformations and integral equations 

Inverse scattering theories are usually formulated in terms of integral equations [l, 21. 
Prominent examples are the Marchenko and the Gel'fand-Levitan integral equations 
for problems at fixed angular momentum. For fixed energy an analogous integral 
equation has been derived by Burdet et a1 [19] and also for the generalized inverse 
scattering problem (1) an integral equation can be given [14]. In the following we 
consider the relationship between the Darboux transformations (8) and the corre- 
sponding integral equations. 

We construct the integral equations starting from the Darboux transformations 
(8). The key for this procedure is the relation 

which is easily obtained from (1). Integrating (20) from a constant value c to r yields 

In order to derive the standard integral equations of inverse scattering theory the 
boundary conditions 

w[qdv, 'r);  So(Bi. 4"' = 0 i= l , 2 , .  . . , N  (22) 
are required. Thus the Darboux transformations (8) can be cast into the form 

(23) 

The relation (23) is the integral expression satisfied by a generalized transformation 
operator [2, 201 K(r,  s), appearing in the Gel'fand-Levitan procedure (h(r) = 1, c= 0) 
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and in the integral equation of Burdet et al [19] (h(r)=l/r’, c=O). The symmetry 
property of Darboux transformations (10-12, 18) leads directly to the characteristic 
symmetry property of the kernel K(r,  s) 
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Dz(r)K(r, = Do(s)K(r, 4. (25) 
Summarizing all these features of K(r, s) we can conclude that K is a generalized 
transformation operator. Hence, K satisfies the integral equation 

where Q(r, t) is a symmetric kernel obeying the relation 

4(r)Q(r, t) = Ddt)Q(r, 4. (27) 
In our case the symmetric kernel Q(r, t) is defined by 

and yields via the integral equation (26) the specific transformation kernel (24). 
Subject to the boundary condition (22) the integral equation is valid for arbitrary 

solutions qo(aj, r ) ,  co(aj, r) ,  &(fil, r) of the Sturm-Liouville equation (1) with the 
potential Vo(r). The Darboux transformations generate a wide class of exactly solvable 
models associated with degenerate kernels in the general integral equation (26). The 
degenerate Gel’fand-Levitan integral equation emerges as a special case (h(r) = - 1, 
c=O) of our procedure. In this case the use of regular solutions for qo(q, r ) ,  co(q, r)  
and Jost solutions .$o(/3t, r) leads directly to the exactly solvable model of Bargmann 
[16,18]. For h(r) = 1hz,  the class of Darboux transformations contains the solutions of 
the integral equation of Burdet et al[19] with degenerate kernels. Darboux transfor- 
mations with other choices of the wavefunctions r0(ai, r), &(pi, r) and different h(r) 
lead to new exactly solvable models which are the subject of the next section. 

4. Exactly solvable models 

The Darboux transformations (8) provide us with exact analytic expressions for the 
solutions of the Sturm-LiouviUe equation (1). These wavefunctions are given in.terms 
of the solutions to an a priori known reference potential. Using scattering theory we 
can derive expressions for the S-matrix and the corresponding potential analytically. 
These so-called exactly solvable models depend on N parameter pairs (a;,pl), 
i = 1,2, . . . , Nand the chosen reference problem. In many cases the S-matrix reduces 
to a very simple expression which can easily be applied to analyse realistic scattering 
data [13]. 

In the past exactly solvable models have been formulated and applied mainly for 
scattering problems at fixed energy [12] and at fixed angular momentum [16,18]. The 
study of the general Sturm-Liouville equation (1) allows us not only to consider both 
standard scattering problems at the same time but also to investigate more complex 
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situations where E and dz are mutually linear dependent [14]. We consider the cases 
associated with the function 

a+br2 
h(r) =- + fzy(r), r2 

where a ,  b are arbitrary constants and hy(r) is the form factor of a yz-dependent 
potential term which vanishes asymptotically and fulfills the conditions for potentials 
in quantum scattering theory. With (29) the Sturm-Liouville equation (1) can be 
reduced to a Schrodinger equation with k and d depending on the continuous 
parameter 8 = y ,  

k2(y) = ki -  by2 A y y )  =g+ayz.  (30) 
The inclusion of h(r) is a slight generalization compared to the cases considered by 
Rudyak and Zakhariev [14]. Assuming h,(r) E 0 and fixing a = 0 or b = 0 reduces the 
general scattering problem to a standard one at fixed E or at fixed I ,  respectively. For 
a = 0 and b = 0, h,(r) + 0 we obtain the cases studied by Chadan and Musette [21]. 

In the following we give some examples of exactly solvable models generated by 
the Darboux transformations (8) of the general Sturm-Liouville equation (1). In 
particular, we study the case a#O, b#O which is new and has not been considered 
previously. We restrict ourselves to the three main cases, where &,(Bj, r) and &,(a,, r) 
are chosen to be regular, irregular or Jost solutions. 

(1) We assume &(pi, r )  and c0(aj, r) to be 

r): =fo(-k(Bi).  Wi), 4 h(ai, r) =fotk(ajLa(ai). r )  (31) 

(32) 

where fo(k, A, r) denotes Jost solutions characterized by their asymptotic behaviour, 

&(k. A, r) + eib. 
r-- 

Performing the Darboux transformation we determine the corresponding S-matrix 
S(k(y),  d(y)) from the asymptotic behaviour of the regular solutions. For N pairs 
(aj, pi) we obtain 

The function So(k(y), A(y)) denotes the S-matrix corresponding to the reference 
potential Vo(r). In this case the restriction a f O ,  b#O is not essential for the S-matrix 
(33) because only Jost solutions with their simple asymptotic behaviour (32) occw in 
the derivation. Using the relationships (30) the S-matrix (33) can also be cast into the 
form 

which is a straightforward generalization of the S-matrix obtained in the rational 
scheme of Lipperheide and Fiedeldey [12]. Furthermore, it should be remarked that 
there are no additional restrictions on the values k(aj), k(p j ) ,  i= 1,2,. . . , N. 
Choosingp,= a?, i= 1,2, . . . , N leads to a unitary S-matrix (assuming y, Ao, ko, a, b to 
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be real) and a real potential. 
(2) We consider the choice 
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Eo(BEsi, r): =cpo(k(BJ, a(@. r) Uai,  r):=fd-k(aJ, a(%), r) (34) 
where cpn(&5',), dui), r)  is the regular solution characterized by its behaviour at the 
origin 

plO(k(Bi), n(Bi), d" @+In- (35) ,-- 
Applying the Darboux transformation and evaluating the asymptotic behaviour of the 
corresponding regular solution we can define an S-matrix only under the restriction 
Imk(Pi)#O. We obtain 

where the sign in front of k(&) is as shown for Im k(Bi)>O, and must be reversed for 
Im k(BJ€O. In both regions the restriction b#O is essential for the determination of 
the S-matrix (36) because for the cases at fixed k another limit has to be taken. In the 
limit a = 0 the S-matrix (36) corresponds to the result of Theis [16] and consequently 
the restriction afO is not essential. For real k(@;) an S-matrix can only be defined in 
the k e d  energy scattering problem. This singular case has been outlined in detail 
elsewhere [17] and is not a simple limit of (36). 
(3) We assume 

M P ~ ,  r): =p lo(k (~ j ) ,  wi), r) k(ai, 4: =plo(k(aJ, &4, r)- (37) 
Here we obtain 

Again the sign in front of k(aJ is as shown for Im k(ai) > 0, and must be reversed for 
Im k(aJ < 0, and similarly for k(@. As in case (2) an S-matrix can be given for real 
k(ai), k(&) only at fixed energy. This is the so-called non-rational scheme [E] which, 
however, is not the limit of (38) for b=O. 

The behaviour of the associated potentials near the origin and at asymptotic 
distances follows from that of different solutions fn(Bi,  r), cn(ai, r). Without going into 
the details we obtain 

V k )  - VO(+ D 
,-0 

where C and D are constants depending on the specific values k(a,), k(Bi). 

5. Conclusions 

We have studied Darboux transformations of a Sturm-Liouville equation which 
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allows not only a unified description of the inverse scattering problems at fixed energy 
and at fixed angular momentum but also the treatment of more general inverse 
scattering problems including mutual linear dependence of ,Iz and kZ. Of particular 
interest are twice-iterated Darboux transformations which are the underlying trans- 
formations of the rational and non-rational schemes [12,17] and of the solutions of 
Theis [16]. Starting from these twice-iterated Darbow transformations we have 
formulated a matrix generalization leading to very compact expressions suitable for 
application to realistic scattering systems. 

Studying the features of the Darboux transformations we have established a 
symmetry property which is of great importance to understand the connection with 
the relations of inverse scattering theory. It turns out that the Darboux transforma- 
tions are realizations of generalized transformation operators as studied by Levitan 

The symmetry property is important to reveal the relationship between Darboux 
transformations and the integral equations of inverse scattering theory. Starting from 
the Darboux transformations and their properties we can derive generalized integral 
equations formally equivalent to those of inverse scattering theory [Z]. In analogy to 
the Bargmann potentials, the Darboux transformations always correspond to solu- 
tions of the integral equations with degenerate symmetric kernel. 

In principle the symmetric kernel contains the spectral information of the scatter- 
ing system. However, there are no simple relationships with the Jost functions or the 
S-matrix in the general case because the reference solutions &(pi, T ) ,  [(ai, r ) ,  i =  
1,2, N are arbitrary. It is obvious that this will be a very difficult task which can be 
done only in specific cases. 

These Darboux transformatiom enable us to define a wide and unified class of 
exactly solvable models. We have studied some new schemes giving their S-matrices 
explicitly. These extended scattering schemes are of particular interest for studying 
problems where A*- or /&dependent potentials are involved. Applications of this type 
of models are in progress. 

~ ~ 
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